
Surface Solar Radiation in North America: A Comparison of Observations,
Reanalyses, Satellite, and Derived Products*

ANDREW G. SLATER

National Snow and Ice Data Center, CIRES, University of Colorado Boulder, Boulder, Colorado

(Manuscript received 22 May 2015, in final form 8 September 2015)

ABSTRACT

Observations of daily surface solar or shortwave radiation data from over 4000 stations have been gathered,

covering much of the continental United States as well as portions of Alberta and British Columbia, Canada.

The quantity of data increases almost linearly from 1998, when only several hundred stations had data. A

quality-control procedure utilizing threshold values along with computing the clear-sky radiation envelope

for individual stations was implemented to both screen bad data and rescue informative data. Over two-thirds

of the observations are seen as acceptable. There are 15 different surface solar radiation products assessed

relative to observations, including reanalyses [Twentieth-Century Reanalysis (20CR), CFS Reanalysis and

Reforecast (CFSRR), ERA-Interim, Japanese 55-year Reanalysis Project (JRA-55), MERRA, NARR, and

NCEP–NCARReanalysis 1 (NCEP-1)], derived products [observations from the CRU and NCEP-1 (CRU–

NCEP); Daily Surface Weather and Climatological Summaries (Daymet); Global Land Data Assimilation

System, version 1 (GLDAS-1); Global Soil Wetness Project Phase 3 (GSWP3); Multiscale Synthesis and

Terrestrial Model Intercomparison Project (MsTMIP); and phase 2 of the North American Land Data As-

similation System (NLDAS-2)], and two satellite products (CERES and GOES). All except the CERES

product have daily or finer temporal resolution. TheRMSE of spatial biases is greater than 18Wm22 for 13 of

the 15 products over the summer season (June–August). None of the daily resolution products fulfill all three

desirable criteria of low (,5%) annual or seasonal bias, high correlation with observed cloudiness, and

correct distribution of clear-sky radiation. Some products display vestiges of underlying algorithm issues [e.g.,

from the Mountain Microclimate Simulation Model, version 4.3 (MTCLIM 4.3)] or bias-correction methods.

A new bias-correction method is introduced that preserves clear-sky radiation values and better replicates

cloudiness statistics. The current quantity of data over the continental United States suggests that a solar

radiation product based on, or enhanced with, observations is feasible.

1. Introduction

Incoming solar, or shortwave, radiation is an integral

part of the surface energy balance and can often be the

largest energy source at the earth’s surface. The amount

of energy available at the surface will play a central role

in determining the partitioning among sensible, latent,

and conductive energy fluxes at the surface. Similarly,

the hydrologic budget is heavily influenced by solar

radiation as evaporation is governed by net radiation.

Furthermore, biological activity such as photosynthesis,

and in turn carbon cycling, is dependent on the amount

and type (whether direct or diffuse) of solar radiation

(Monteith 1972). Knowledge of surface radiation can

also be of use for evaluation and development of at-

mospheric radiative transfer models (Wild et al. 2014),

which in turn can improve climate outlooks and weather

forecasting. The use of solar power (e.g., via photovol-

taic cells) is increasing and is projected to keep doing so

over the next decade (Reichelstein and Yorston 2013),

so a better understanding of the spatial and temporal

distribution of the surface flux can be of use for planning.

The potential benefits of more physically based hy-

drology and land surface models are becoming recog-

nized, but part of their limitation lies in the need for

more explicit input (forcing) data, which typically include

surface global solar radiation. Operational hydrologic
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forecasting systems, such as those of the U.S. National

Weather Service, still rely on simplified conceptual tem-

perature index models (Anderson 1973, 2006) as a pri-

mary tool, in part because of a lack of appropriate forcing

data. The required forcing variables are observed at dif-

ferent spatial densities, both at the national (United

States) and global scale; for example, observations of

temperature and precipitation are much more common

than those of radiation.

Because of the need for spatially and temporally

complete fields of forcing data, continental- or global-

scale efforts of modeling mass and energy fluxes at the

earth’s surface usually derive solar radiation from re-

analysis projects, often applying indirect observational

(Sheffield et al. 2006) or satellite-derived (Cosgrove

et al. 2003; Ngo-Duc et al. 2005) bias corrections. Re-

analysis datasets are continually improving as more

observational data become available along with ad-

vances in modeling and data assimilation systems; spa-

tial and temporal resolution of these systems has

increased such that hourly surface meteorology is now

becoming available at 0.38 or finer resolution (Saha et al.

2010, 2014). Alternatively, empirical estimation ap-

proaches have been used for ecologic and hydrologic

modeling studies (Thornton and Running 1999; Bohn

et al. 2013; Livneh et al. 2013).

However, gauging the uncertainty of solar radiation

values at the continental scale via in situ data has been

challenging, perhaps because of a lack of extensive re-

liable observations. As examples, the Baseline Surface

Radiation Network (BSRN; http://www.bsrn.awi.de/)

has 58 well-maintained stations in contrasting climate

zones across the world that measure numerous radiation

variables, and SURFRAD keeps seven stations in the

United States and contains a similar quality of data. The

Global Energy Balance Archive (GEBA; Gilgen and

Ohmura 1999) stores monthly means of solar radiation

spanning 1922–96 and has up to 1405 stations, many of

which are in Europe. These high-quality networks, along

with others, have often been used for evaluation pur-

poses (section 2f), but provide limited spatial coverage

and on their own are insufficient to provide the sort of

spatially and temporally complete product required

for model simulations and development or climato-

logical analysis.

This study presents extensive observations of surface

downward global solar radiation Ssurf and compares this

collection with existing products available from atmo-

spheric reanalyses, derived methods, or satellite data.

The study area is North America, predominantly re-

gions in the contiguous United States (CONUS) and

portions of Alberta and British Columbia, Canada. The

data used in this study are presented in section 2 and

results of comparisons are given in section 3, with dis-

cussion in section 4 and conclusions in section 5.

2. Data

a. Station data

Observed data from numerous station networks were

gathered for this study. It is particularly important to

recognize all the networks and data sources as shown in

Table 1 for operation of the observation stations and for

placing data on the Internet. Such efforts are com-

mended. Data from both state- and national-level net-

works were used; for example, the RAWS and Natural

Resources Conservation Service (NRCS) SCAN sta-

tions span many states. A number of networks are

maintained for the purpose of monitoring agricultural

potential. The combined coverage of many data sources

makes a broader-scale comparison of solar radiation

products possible. There are over 4000 stations with at

least 180 days of raw Ssurf data at various times between

1990 and 2013 (Fig. 1); the number of stations increased

near linearly from 1998. The 218 stations north of 568N
(in Alaska) are excluded from this analysis and will be

considered in a further study, as well as those in Hawaii.

All data except the North Carolina network were

obtained directly fromwebsites (as given in Table 1) in a

mix of 5-min, 15-min, 30-min, hourly, or daily time steps,

though most are daily. Data files involved over 35 dif-

ferent formats with varying numbers of associated var-

iables such as air temperature, precipitation, humidity

measurements, and wind speeds. Solar radiation data

were stored in a variety of units fwith Wm22, Ly h21

[where 1 Langley (Ly) 5 41 840 Jm22], kJ h21, and

MJday21 being most commong. Date and time stamps

in the data files similarly were presented in a multitude

of formats, most in LT, though some in UTC. Daily data

were calculated based on local time as this was howmost

were given. Station metadata also varied in complete-

ness, with some networks only offering a latitude and

longitude while others gave elevation, county, time

zone, date of station activation or decommission, and

instrument listing along with photos of the station.

There are many data sources that could contribute

further information. For example, data from numerous

research projects have not been used largely because the

ratio of obtained data relative to the time and effort

required to make data readable is prohibitive. Effort

toward data archive standardization of basic meteoro-

logical variables may improve this situation.

If all station instruments were operating properly,

measurement error should still be considered. Gueymard

and Myers (2009) give a comparison of monthly average
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TABLE 1. Observation networks with solar radiation data.

Code Website URL Location Name

ACIS http://agriculture.alberta.ca/acis/ Alberta, Canada Alberta AgroClimatic In-

formation Service

AGRIMET-GP http://www.usbr.gov/gp/agrimet/ U.S. Great Plains U.S. Bureau of Reclamation,

Great Plains

AGRIMET-PN http://www.usbr.gov/pn/agrimet/ Pacific Northwest U.S. Bureau of Reclamation,

Pacific Northwest

AWIS http://www.awis.com/mesonet/ Alabama Auburn University Mesonet

AZMET http://ag.arizona.edu/azmet/az-docs.htm Arizona The Arizona Meteorological

Network

CIMIS http://wwwcimis.water.ca.gov/cimis/welcome.jsp California California Irrigation Manage-

ment Information System

CoAgMet http://ccc.atmos.colostate.edu/;coagmet/ Colorado Colorado Agricultural Mete-

orological Network

DEOS http://www.deos.udel.edu/ Delaware Delaware Environmental

Observing System

FAWN http://fawn.ifas.ufl.edu/ Florida Florida Automated Weather

Network

WARM http://www.isws.illinois.edu/warm/icnsitemap.asp Illinois Water and Atmospheric Re-

sources Monitoring

Program

IEM http://mesonet.agron.iastate.edu/agclimate/info.phtml Iowa Iowa Environmental Mesonet

ICLIMATE http://iclimate.org/index.asp Indiana Indiana State Climate Office

KCC http://wdl.agron.ksu.edu/ Kansas Kansas State University

Weather Data Library

KYMESO http://kymesonet.org/index.html Kentucky Kentucky Mesonet

LSU http://weather.lsuagcenter.com/reports.aspx Louisiana Louisiana State University

AgCenter

MAWN http://www.agweather.geo.msu.edu/mawn/ Michigan Michigan Automated

Weather Network

MISSOURI http://agebb.missouri.edu/weather/stations/ Missouri Commercial Agriculture Pro-

gram, Missouri University

NDAWN http://ndawn.ndsu.nodak.edu/index.html North Dakota North Dakota Agriculture

Weather Network

NC ECONet http://www.nc-climate.ncsu.edu/ North Carolina North Carolina ECONet

NJWXNET http://climate.rutgers.edu/njwxnet/ New Jersey NJ Climate and Weather

Mesonet

SCAN http://www.wcc.nrcs.usda.gov/scan/ United States Soil Climate Analysis

Network

SNOTEL http://www.wcc.nrcs.usda.gov/snow/ Western United States Snowpack Telemetry

OARDC http://www.oardc.ohio-state.edu/newweather/ Ohio Ohio Agricultural Research

and Development Center

OK MESONET http://www.mesonet.org/index.php Oklahoma Oklahoma Mesonet

RAWS http://raws.fam.nwcg.gov United States Remote Automatic Weather

Stations

SDAWDN http://climate.sdstate.edu/climate_site/ag_data.htm South Dakota South Dakota Automatic

Weather Data Network

WTXMESO http://www.mesonet.ttu.edu/ Texas West Texas Mesonet

TXETN http://texaset.tamu.edu/ Texas Texas A&M Texas ET

Network

CHILI http://chiliweb.southalabama.edu/archived_data.php Alabama Center for Hurricane In-

tensity and Landfall

Investigation

NICE http://nicenet.dri.edu/ Nevada Nevada Integrated Climate

and Evapotranspiration

Network

CEMP http://www.cemp.dri.edu/ Nevada Community Environmental

Monitoring Program

VANI http://www.islandweather.ca/ Vancouver Island, Canada School-Based Weather Sta-

tion Network
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global radiation among a range of 12 common commer-

cial pyranometers, both thermopile and silicon-based

instruments. Over the whole year, the mean error range

was within62% of the reference instruments. However,

there was a seasonal cycle within the errors, with winter

monthly means showing the largest error (up to 28%)

because of the lower zenith angles. Diffuse radiation

conditions tended to produce larger errors. Similarly,

Stoffel et al. (2000) found errors on the order of 12.5%

and down to 210% in comparison to reference in-

struments. Cronin and McPhaden (1997) indicate that

calibration accuracy of 2% was available under labora-

tory conditions for their pyranometers.

b. Data QC

The disparate data sources in Table 1 contain a wide

variety of station maintenance and data curation. Daily

mean global solar radiation at the surface is the variable

used for this study as it is the most common time step

available from all the data sources. This section first

outlines some quality-control (QC) methods that have

been reported in the literature and then describes the

procedures used in the current work. The QC procedure

for daily data in this work is designed to be independent

of other data sources (as they are not always available) and

its primary objective is to be able to identify erroneous

data. A further objective is to determine what datamay be

‘‘rescued’’ after being flagged as questionable. For the

current study, identifying erroneous data is a higher pri-

ority than compiling a temporally complete dataset; hence,

blocks of data that may contain some good values are re-

moved in preference to screening individual days.

1) QC IN PRIOR STUDIES

Various methods for QC are in the literature, though

many are for hourly data. These use a clearness index,

I
clear

5
S
surf

S
clear_sky

, (1)

where Sclear_sky is clear-sky (i.e., cloudless) radiation at

the surface. Younes et al. (2005) review a number of

rigorous methods for solar radiation QC; however, most

are based on the use of Iclear relative to diffuse radiation

and thus are not applicable to the situation where data

comprise only daily values of global radiation. Journee

and Bertrand (2011) describe a QC procedure for

subhourly data, though they have the advantage of

having direct, diffuse, and reflected radiation values.

They apply a series of threshold tests: subhourly Ssurf
needs to be less than the top-of-atmosphere radiation

Stoa and within 110% of Sclear_sky, while daily mean

values need to be greater than 3% of Stoa. A series of

plausible envelopes of data are also developed, based

on the ratio of Ssurf to Stoa relative to the ratio of di-

rect beam or diffuse radiation to Stoa, though such a

method cannot be applied to the problem at hand.

Contamination of sensors, for example, by snow, was

screened out if reflected radiation was greater than

incoming.

Shi et al. (2008) document a three-step QC procedure

with the goal of identifying those data that are physically

unreasonable. For the first test, an upper limit of global

radiation data is determined as Sclear_sky, while the lower

limit was set to 3% Sclear_sky. The second test applied by

Shi et al. (2008) required additional measurements such

as sunshine duration, while for the third test, a 15-yr time

series was used to identify erroneous data from valid

outlier cases.

2) QC APPLIED IN THIS STUDY

Where possible, some of the above QC concepts have

been applied to the data in this study, for example,

threshold values. However, the highly variable length of

observational record at each station along with the use

of daily Ssurf data without components like reflected or

diffuse data meant that alternative methods needed to

be developed. The procedure for QC of observations

collected for this project follows a number of steps:

1) basic screening of daily and subdaily Ssurf and

computation of daily means;

2) compute daily clear-sky radiation values [i.e.,

Sclear_sky; section 2b(3)];

3) fit a clear-sky ratio (CSR), if possible to do so, based

on tests described in section 2b(4);

4) check for excessive high values or continuously low

values relative to the CSR;

5) of the remaining data, choose the acceptable CSR

range for a given application;

FIG. 1. Location of stations used in this study. Red dots represent

the stations used in the regional analysis [section 3b(2)].
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6) rescale data according to the CSR (e.g., to filter for

an erroneous trend); and

7) filter the remaining data with thresholds and unlikely

occurrences.

The QC started with an initial screening of subdaily

data in which distinctly bad data were removed, for ex-

ample, values below 25 or above 1400Wm22. Seem-

ingly impossible negative or excessively high values can

be registered because of calibration issues that may be

corrected later. A full set of data for sunlight-hours per

day (with an additional hour at the start and end of the

solar day) was required when computing a daily mean

from subdaily data. Many stations also underwent

manual and visual screening to remove erratic data. All

further tests were applied to daily data.

3) CLEAR-SKY RADIATION VIA THE BIRD AND

HULSTROM MODEL

Clear-sky global radiation was determined via the

Bird and Hulstrom (1981) model. The model uses lati-

tude, longitude, and elevation (as for Stoa) for solar ge-

ometry calculations, but it also requires knowledge of

atmospheric water content, aerosol optical depth

(AOD), and surface albedo to compute attenuation and

scattering of radiation in the atmosphere, thus giving

Sclear_sky. Atmospheric water content was derived from

the Climate Forecast System Reanalysis and Reforecast

(CFSRR) because of its high spatial resolution and in

North America there is a relatively high density of

radiosondes for assimilation. AOD was derived from

the MISR sensor (MISR_AM1_CGAS F15_0031,

MIL3MAE; https://eosweb.larc.nasa.gov/project/misr/

cgas_table). The MISR product is a monthly optical

depth with data from February 2000 through present.

Missing values occur in this dataset; thus, each month

missing MISR values are first filled on a spatial basis via

Cressman (1959) weighting of neighboring grid cells

within 90km. From March 2003 onward, over 90% of

the CONUS was covered with data after spatial filling.

For times and locations that could not be filled this

way, a climatological value for the particular location

and month was used. Daily and subdaily values of AOD

were obtained via a spline interpolation of the monthly

values; obviously, this does not capture day-to-day changes.

Surface albedo was derived from the MODIS MOD43A3

product (https://lpdaac.usgs.gov/dataset_discovery/modis/

modis_products_table/mcd43a3), which is at a pixel reso-

lution of 500m and available from February 2000 through

present (Schaaf et al. 2002). Albedo is available every

8 days using 16 days’ worth of data (which is the nadir

repeat cycle of the polar-orbiting EOS satellites,Terra and

Aqua) and is interpolated to a daily value. For periods

when data were not available, climatological values de-

veloped over the entire record were used. The Sclear_sky
results are not particularly sensitive (on the order of a

couple of percent) to AOD or albedo when perturbed

within their expected range. The robustness of Sclear_sky
results is demonstrated belowwhen compared to observed

values [section 2b(4)] and reanalyses (section 3a).

4) COMPUTING THE CSR

Pyranometers can suffer from poor calibration or

poor maintenance. For example, dirt accumulation on

the sensor can result in lower-than-true readings (Foltz

et al. 2013), or tilting of the radiometer in the direction

of the sun or excess reflection may give measured values

above Sclear_sky. With such data contamination issues in

mind, for a given station over a period of time such as

several months, the CSR is computed as

CSR5
E

clear_sky

S
clear_sky

, (2)

where Eclear_sky is an upper-bound envelope of mea-

sured values on days we expect to have had a clear sky.

The CSR is computed from an envelope of values and

should not be confused with Iclear, which can be calcu-

lated daily (or hourly).

ThisEclear_sky envelope is found as follows. For a given

period of data for a particular station, a histogram of

daily Iclear values was computed using bin widths of 0.04.

The bracketing values of the bins were iteratively tested

for obtaining greatest data discrimination (e.g.,

whether a bin was, say, 0.95–0.98, as compared to 0.96–

0.99); if more than 10% of the data had an Iclear values

above 0.95, only these data were used in the computa-

tion. Greater discrimination refers to a single bin

containing a greater portion of the available data. The

bin with the largest frequency was chosen as containing

the observed clear-sky days, and the CSR is then taken

as the mean value of Iclear within that bin. An assump-

tion of the method is that the most frequently occurring

upper-bound envelope of Iclear occurs when the sky

is clear.

To be accepted as a valid CSR, several criteria had to

be satisfied: 1) at least 10% of considered data had to be

within the bin chosen to be the clear-sky case; 2) the

clear-sky bin has to have at least 20%more data than the

nextmost-populated bin, and should this not be the case,

Eclear_sky is ambiguous and is not assigned; and 3) if Iclear
is 0.5 or less for an extended period of interest, such as a

month or more, all data for that period are marked

as bad.

A CSR value is computed for each 12-month period,

starting at each month of the year, as well as for just
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the warm season (April–September) and cold season

(October–March). Such a piecewise approach is used to

account for data gaps (e.g., from initial screening), and

instruments may be periodically serviced or may drift

with time. If Eclear_sky values had been computed for a

given month and location, the closest value to a CSR of

1.0 is selected; remembering that all CSR values are

calculated using available data and had to pass several

tests for plausibility.

The aim of using a CSR is to both eliminate bad data

that under- or overestimate solar radiation as well as to

potentially ‘‘rescue’’ as much observed data as possible

by rescaling the raw values by their CSR, though this

includes an assumption that the error can be equally

rescaled under clear and cloudy conditions, which is why

the use of CSR rescaling is limited to the range of 0.95–

1.05 in this study. Even with problems such as in-

strument drift or contamination, the larger variability

caused by clouds is still recorded.

Additional checks are made after rescaling raw data

by the CSR. First, if over a continually moving 40-day

window there exist at least 30 measurements where the

mean Sclear_sky value is above 40Wm22 and the maxi-

mum Iclear is 0.65, then all data in the window are

marked as bad. Using the same window, if five mea-

surements exceed an Iclear of 1.15, all data are marked as

bad. If measured radiation was less than 3% of Sclear_sky
and daily Sclear_sky was above 50Wm22, the data were

considered bad. A more lax 6% was allowed for lower

Sclear_sky values. Data above an Iclear of 1.05 were also

removed. The constants used in the QC procedure are

gained from visual inspection and testing on a wide va-

riety of station data.

The concept ofEclear_sky is best demonstrated in Fig. 2,

where it is shown with a red line, sitting atop the raw

observations. The station at Dale Bitner, Idaho,

displays a slight downward trend in the measurements

that was captured by the CSR. Caputa, South Dakota,

shows good-quality data until late summer 2012. Data

during autumn 2012 could not obtain a CSR fit and thus

were rejected, while the data in 2013 exceeded Sclear_sky
but could be rescued or rejected depending on CSR

threshold (in this case, CSR exceeds 1.10). Standard

threshold tests and variance checks would not neces-

sarily catch the trend at Dale Bitner as all values are

quite reasonable. Such tests would reject a portion of the

Caputa data that exceeds Sclear_sky, but remaining data

could be erroneously accepted. Figures 2b and 2d show

the result when the raw data have been rescaled by

the CSR.

A histogram of computed CSR values for all data

points that have passed all the above tests is shown in

Fig. 3a. It demonstrates that the vast majority of values

FIG. 2. Examples of (a) raw data (yellow dots) with the envelope

of clear-sky days (i.e., Eclear_sky; red line) and expected clear-sky

radiation (i.e., Sclear_sky; blue line) and (b) final data (orange dots)

with the envelope of expected clear-sky radiation (i.e., Sclear_sky;

blue line) for Dale Bitner, Idaho. (c),(d) As in (a),(b), but for

Caputa, South Dakota.
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are between 0.99 and 1.01, which would suggest that the

system is correctly finding the clear-sky cases and that

Sclear_sky values used in the analysis are very close to

observed. The maximum number of potentially valid

stations at any one time reaches almost 3000 (0.75 .
CSR. 1.25; Fig. 3b) and about 74% of the original raw

data have a CSR between 0.95 and 1.05. The scalloped

shape of the quality-controlled data quantity shows a

drop during winter and may suggest screening of snow

contamination.However, the lack of fully accounting for

intermittent snowfall on sensors remains a weakness, so

caution is urged for snowy cases. Last, it is acknowl-

edged that portions of erroneous data have no doubt

failed to be identified and that additional QC tests could

be added in the future. The time and effort required for

QC has led some prior studies to simply use raw station

data (e.g., Zhao et al. 2006) when investigating sensi-

tivity of primary productivity algorithms, and in other

instances data have been used though biases or step

functions are identified (Jepsen et al. 2012). However,

large amounts of the final data underwent visual

screening and the total volume of data, along with the

spatial coherence in values, likely make for robust re-

sults. As noted above, to remain conservative, data used

for comparative purposes in this study have been limited

to CSRs between 0.95 and 1.05.

c. Reanalysis data

The reanalysis datasets evaluated in this study are

listed in Table 2 along with their respective specifica-

tions, references, and websites. Solar radiation is a

forecast field in reanalysis systems, meaning that there

are no direct measurements of solar radiation assimi-

lated. Seven different reanalyses are used in this study.

Four are the ‘‘new generation’’ of global reanalyses

that all run at subdegree spatial resolution: NASA’s

Modern-Era Retrospective Analysis for Research

and Applications (MERRA; Rienecker et al. 2011),

NOAA’s CFSRR (Saha et al. 2010), the ECMWF in-

terim reanalysis (ERA-Interim, hereafter ERAI; Dee

et al. 2011), and most recently the Japanese 55-year

Reanalysis Project (JRA-55; Kobayashi et al. 2015).

Slightly older reanalyses included here are the original

NCEP–NCARReanalysis 1 (hereafter NCEP-1; Kalnay

et al. 1996) and the North American Regional Re-

analysis (NARR; Mesinger et al. 2006). The reanalyses

mentioned so far assimilate information about profiles of

atmospheric temperature and humidity from satellite

radiances, aircraft measurement, and radiosondes, which

in turn impact the radiative transfer calculations that

provide the surface flux of solar radiation. In contrast, the

Twentieth-Century Reanalysis (20CR; Compo et al.

2011), which spans the greatest time period, assimilates

only surface atmospheric pressure and uses an ensemble

assimilation technique; the flux values used here are the

mean of the ensemble. Several of these products are used

for compiling subsequent datasets.

d. Derived data products

Derived products are usually developed for the pur-

pose of forcing land surface, hydrology, ecology, and

biome models, or for gridded analysis of surface mete-

orology. Typically, they are combinations of various

items such as reanalyses, observed data, and algorithms

and are often subject to some form of bias correction.

The Daily Surface Weather and Climatological Sum-

maries (Daymet) product is calculated using the

Mountain Microclimate Simulation Model, version 4.3

(MTCLIM 4.3; Thornton and Running 1999), with daily

minimum and maximum air temperature and daily

precipitation. Calculated for the CONUS, data were

supplied from the Cooperative Observer network across

the country and the higher-elevation NRCS SNOTEL

network in the western states. On the order of 32 000–

41 000 stations were used in the United States within a

given year. Input data were interpolated to produce a

product at 1-km resolution.

The CRU–NCEP data, developed and maintained by

N. Viovy and colleagues [Laboratoire des Sciences du

FIG. 3. (a) The histogram of calculated CSRs over the span of all

data, expressed as a percentage. Note the large peak at 100%.

(b) The quantity of raw and quality-controlled data over the period

of record. The scalloped pattern of quality-controlled data is likely

due to screening of snow contamination. Over 4000 stations are in

the record, but not all were continuously active.
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Climat et de l’Environnement (LSCE), France], are a

blend of NCEP-1 and observations maintained by the

Climatic Research Unit (CRU; University of East An-

glia). A description accompanies the data and is given in

Wei et al. (2014). Using observed cloud cover from

CRU, date, and latitude, the empirical method of

Berliand (1960) is used in the generation of solar radi-

ation. The noted high bias of NCEP-1 radiation is thus

reduced. This CRU–NCEP dataset has been used for

many modeling studies, for example, the Trends in Net

Land–Atmosphere Carbon Exchange (TRENDY) proj-

ect (Piao et al. 2013).

In an earlier dataset based on CRU and NCEP-1

(Ngo-Duc et al. 2005), NCEP-1 solar radiation data had

been bias corrected on a monthly time scale using the

Surface Radiation Budget (SRB; http://gewex-srb.larc.

nasa.gov; Darnell et al. 1988) estimates of surface solar

radiation, which spanned the period 1983–95. A single

coefficient was computed for eachmonth of the year and

is held constant over the period of the dataset. These

earlier data are not used in the current study but are

mentioned to avoid confusion.

The Multiscale Synthesis and Terrestrial Model In-

tercomparison Project (MsTMIP) North American

(Huntzinger et al. 2013) solar data are documented by

Wei et al. (2014). MTCLIM 4.3 was used to obtain daily

solar radiation values, driven by NARR daily maximum

and minimum temperatures as well as bias-corrected

precipitation. The calculated daily values were then

temporally distributed by using NARR 3-hourly solar

data as a scaling template.

Phase 2 of the North American Land Data Assimila-

tion System (NLDAS-2) has produced a model forcing

dataset from 1979 through present at a 1/88 resolution
over the CONUS. The NLDAS-2 solar radiation data

use NARR values interpolated to the finer spatial grid

and temporal resolution, then used a product from Geo-

stationaryOperational Environmental Satellite–8 (GOES-8)

for adjustment, with details given in Cosgrove et al. (2003).

Using data spanning 1996–2000, for each month, the

mean ratio of GOES-8 to interpolated NARR data

was computed for each hour of the day (giving 12-

month 3 24-h ratios). All interpolated NARR solar

values are then rescaled by their respective ratios for

each month and hour.

The very recent Global Soil Wetness Project Phase 3

(GSWP3) radiation dataset is based on 20CRand applies a

monthly bias correction based on satellite retrievals.

TheGlobal LandData Assimilation System, version 1

(GLDAS-1), applies a variety of sources for its solar

radiation. According to the available documentation,

the data are a combination of various sources: 1979–93

TABLE 2. Solar radiation products available across the CONUS.

Dataset Spatial resolution

Temporal

resolution Period used Reference and website

Reanalyses

CFSRR 0.328 1 hourly 1990–2010 Saha et al. (2010); http://cfs.ncep.noaa.gov/cfsr/

ERAI 0.758 3 hourly 1990–2013 Dee et al. (2011); http://apps.ecmwf.int/datasets/data/interim-full-

daily/

JRA-55 0.508 3 hourly 1990–2013 Ebita et al. (2011); http://jra.kishou.go.jp/JRA-55/index_en.html

MERRA 0.58 3 0.668 1 hourly 1990–2013 Rienecker et al. (2011); http://gmao.gsfc.nasa.gov/merra/

NARR 32 km 3 hourly 1990–2013 Mesinger et al. (2006); http://www.esrl.noaa.gov/psd/data/gridded/

data.narr.html

NCEP-1 2.58 6 hourly 1990–2013 Kalnay et al. (1996); http://www.esrl.noaa.gov/psd/data/gridded/

data.ncep.reanalysis.html

20CR 2.08 3 hourly 1990–2013 Compo et al. (2011); http://www.esrl.noaa.gov/psd/data/20thC_

Rean/

Derived products

Daymet 1 km Daily 1990–2013 Thornton and Running (1999); http://daymet.ornl.gov/

CRU–NCEP 0.508 6 hourly 1990–2012 Wei et al. (2014); http://dods.extra.cea.fr/data/p529viov/cruncep/

MsTMIP 0.258 3 hourly 1990–2010 Wei et al. (2014); http://nacp.ornl.gov/MsTMIP.shtml

NLDAS-2 0.1258 1 hourly 1990–2013 Cosgrove et al. (2003); http://ldas.gsfc.nasa.gov/nldas/NLDAS2forcing.

php

GSWP3 0.58 3 hourly 1990–2010 Yoshimura and Kanamitsu (2013); http://hydro.iis.u-tokyo.ac.jp/

GSWP3/

GLDAS-1 1.0 3 hourly 1990–2013 Rodell et al. (2004); http://ldas.gsfc.nasa.gov/gldas/

Satellite products

GOES 0.58 Daily 1996–2010 Pinker and Laszlo (1992); http://www.atmos.umd.edu/~srb/gcip/

CERES 1.08 Monthly 2000–13 Kato et al. (2013); http://ceres.larc.nasa.gov/products.php?

product5EBAF-Surface

408 JOURNAL OF HYDROMETEOROLOGY VOLUME 17

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 03/11/21 09:46 PM UTC

http://gewex-srb.larc.nasa.gov
http://gewex-srb.larc.nasa.gov
http://cfs.ncep.noaa.gov/cfsr/
http://apps.ecmwf.int/datasets/data/interim-full-daily/
http://apps.ecmwf.int/datasets/data/interim-full-daily/
http://jra.kishou.go.jp/JRA-55/index_en.html
http://gmao.gsfc.nasa.gov/merra/
http://www.esrl.noaa.gov/psd/data/gridded/data.narr.html
http://www.esrl.noaa.gov/psd/data/gridded/data.narr.html
http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.html
http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.html
http://www.esrl.noaa.gov/psd/data/20thC_Rean/
http://www.esrl.noaa.gov/psd/data/20thC_Rean/
http://daymet.ornl.gov/
http://dods.extra.cea.fr/data/p529viov/cruncep/
http://nacp.ornl.gov/MsTMIP.shtml
http://ldas.gsfc.nasa.gov/nldas/NLDAS2forcing.php
http://ldas.gsfc.nasa.gov/nldas/NLDAS2forcing.php
http://hydro.iis.u-tokyo.ac.jp/GSWP3/
http://hydro.iis.u-tokyo.ac.jp/GSWP3/
http://ldas.gsfc.nasa.gov/gldas/
http://www.atmos.umd.edu/~srb/gcip/
http://ceres.larc.nasa.gov/products.php?product=EBAF-Surface
http://ceres.larc.nasa.gov/products.php?product=EBAF-Surface


are bias-corrected ECMWF reanalysis data [using the

method of Berg et al. (2003)] and 1994–99 are similarly

bias-corrected NCEP-1 data. The dataset used for bias

correction was the Langley 8-yr short- and longwave

SRB (Gupta et al. 1999). For 2000, analysis fields from

NOAA’s Global Data Assimilation System were used,

then from 2001 through present, radiation is from the

Agricultural Meteorology Modeling System (AGRMET)

algorithm of the Air Force Weather Agency (AFWA;

see documentation at http://disc.sci.gsfc.nasa.gov/

hydrology/documentation). AGRMET is based on

the three-level radiative transfer model of Shapiro

(1987) and uses near-real-time cloud information

from DMSP and NOAA satellites. AGRMET’s na-

tive resolution since 2002 is 24 km. Note that GLDAS,

version 2 (GLDAS-2), uses the Sheffield et al. (2006)

dataset but is not updated to the present and hence is

not used in this study.

e. Satellite data

The Clouds and the Earth’s Radiant Energy System

(CERES) Energy Balanced and Filled (EBAF) surface

solar radiation product (edition 2.8) is derived from the

CERES sensors on board both NASA EOS satellites,

Terra and Aqua. The monthly mean retrieval product

spans from early 2000 through present. EOS satellites

are sun synchronous with overpasses at 1030 LT (Terra)

and 1330 LT (Aqua); thus, 3-hourly geostationary data

provide information on the diurnal cycle between 608N
and 608S, except over snow-covered regions where such

data are considered to be of insufficient quality. Full

details are available at the CERES website (Table 2)

and in the algorithm document (Charlock et al. 1997).

The University of Maryland GOES estimates of Ssurf
are available for 1996–2010 (Pinker and Laszlo 1992).

The product used here has been applied in hydrologic

studies (e.g., Jepsen et al. 2012) but is different from the

short-term (1996–2001) GOES-8 data used to correct

the NLDAS-2 product (Cosgrove et al. 2003).

f. Prior evaluations of solar radiation data

A number of studies looking at the quality of various

solar radiation products have been performed in the

past. Hicke (2005) compared NCEP-1 and a product

that combined the International Satellite Cloud Clima-

tology Project (ISCCP; Rossow and Schiffer 1999;

Zhang et al. 2004) with a radiative transfer model. The

GEBA (Gilgen and Ohmura 1999) was used for global

comparison for the period 1984–90. It was shown that

NCEP-1 substantially overestimated Ssurf in all regions

other than the Amazon and that the largest relative

difference between the products occurred in the high

latitudes of the Northern Hemisphere.

Six stations in SURFRAD over the United States

were used by Markovic et al. (2009) to compare ERA-

40, NARR, and ISCCP solar data with the eventual aim

of assessing regional climate models. They found that all

products had a positive bias, and overall ERA-40 gave a

roughly similar mean error to that of ISCCP, though

product errors were not consistent at each station.

Shook and Pomeroy (2011) used the March–

September period at eight stations in the prairie and

montane regions of Canada for comparison to NARR

and NCEP-1 as well as to two empirical methods. Both

NARR and NCEP-1 had high biases, and it was sug-

gested that the empirical Annandale et al. (2002)

method provided the best result, with NCEP-1 pro-

viding the worst.

Kennedy et al. (2011) used 3 years of surface data

from the DOE ARM Southern Great Plains (SGP) site

in Oklahoma to evaluate MERRA and NARR, finding

the common result that both products are biased high

(19 and 47Wm22, respectively, for the annual mean),

with NARR maintaining a high bias during observed

clear-sky periods, suggesting deficiencies in treatment of

aerosols and/or water vapor. MERRA’s inability to

correctly account for cloud cover during precipitation

events was demonstrated by Reichle et al. (2011).

Three or more years of data from 1996 to 2001 at 33

FLUXNET sites (Baldocchi et al. 2001) in North

America were used by Decker et al. (2012) to evaluate

surface meteorology from ERA-40 (Uppala et al. 2005),

ERAI, CFSRR, GLDAS-1, MERRA, and NCEP-1. It

was suggested that MERRA, ERAI, and NCEP-1 over-

estimate variability and that for the most part all products

overestimated incoming solar radiation. NCEP-1 showed

large biases of 25Wm22 or more, while ERAI was noted

as having a smaller overall positive bias and standard

deviation of errors.

Slater et al. (2013) compared observations taken

during NASA’s Cold Land Processes Field Experiment

(CLPX) in Colorado (Elder et al. 2009) to CFSRR,

ERAI, NARR, MERRA, and the GOES product.

An average span of 85Wm22 was found among the

five products for the month of May at locations

containing SNOTEL stations in mountains in the

western United States, though this value was reduced

to only 40Wm22 when the four most similar products

were used. A ‘‘best’’ product could not be clearly

identified.

Evaluations have been performed farther afield; for

example, Jia et al. (2013) used 3 years (2006–09) of data

from 94 stations in China to assess ERAI and the

NCEP–DOE AMIP II reanalysis (NCEP-2; Kanamitsu

et al. 2002), finding positive biases on the order of 25 and

46Wm22, respectively.
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Wang and Zeng (2012) ranked the performance of

Ssurf from five products (CFSRR, ERAI, GLDAS-1,

MERRA, andNCEP-1), comparing up to 3 years of data

(2002–04; large portions are missing) at nine high-

altitude stations on the Tibetan Plateau. GLDAS-1

was ranked highest in four measurements (correlation,

standard deviation of difference from observations, ra-

tio of product to observed standard deviations, and

mean bias), with CFSRR and ERAI sharing the next

best ranks. The ranks are useful for comparative pur-

poses, though absolute differences in energy cannot be

discerned.

ERAI and MERRA were compared to 41 stations in

Europe and Africa by Boilley and Wald (2015); both

displayed high biases because of underestimation of

cloudy conditions, withMERRA faring worse. Zib et al.

(2012) compare five reanalyses (20CR, CFSRR, ERAI,

MERRA, and NCEP-2) at two high Arctic BSRN sta-

tions; they show mean annual biases ranging from;0 to

over 30Wm22, with ERAI being the best performer,

having a bias of less than 3Wm22 at both stations.

3. Results

a. Assessment of CSR

As was shown in Fig. 3a and section 2b(4), the most

common values of the CSR when compared to obser-

vations were between 0.99 and 1.01. These values follow

the expectations that most instruments are correctly

measuring Ssurf. This test alone would suggest that the

calculations of CSR and Sclear_sky are robust.

To add further rigor, the CSR of the various large-

scale products was computed as both a test of the

method and as an analysis tool. Ideally, the products

would return CSR values of 1.0 in accord with the ob-

servations. For each of the products, a CSR was com-

puted for the period 2007–10 for grid boxes containing at

least one observation station. The Sclear_sky used here

was computed exactly as given in section 2b(3), that is,

with observed aerosols and albedo and CFSRR water

vapor. Figure 4 gives the unconditional CSR of the

products, meaning that the computed CSR value is

shown, even if it did not pass the test for ambiguity.

The five most recent reanalyses (20CR, CFSRR,

ERAI, JRA-55, and MERRA) all give CSR values

within the 0.99–1.01 range over the majority of the re-

gion of interest. Such a result is consistent with observed

data and gives further credibility to the robustness of the

Sclear_sky computation along with the ability of the CSR

algorithm to identify the clear-sky case. At the few

places where the CSRs for these reanalyses are outside

the range of 0.97–1.03, such as the far northern coast of

Washington State, the algorithm flagged them as being

ambiguous in most of the reanalyses. That is, in this

coastal region, using all 4 years of data at once, the al-

gorithm could not confidently say that it had found the

clear-sky case; it does not mean that the data are erro-

neous. NCEP-1 (not shown) and NARR have well-

known issues (section 2f) and returned CSR values well

above 1.0, while CSR for the derived products return a

range of values. GLDAS-1 has a low CSR in the Pacific

Northwest and mountain regions of the west, while

NLDAS-2 performs well on the coasts but poorly inland.

Daymet,MsTMIP, and CRU–NCEP consistently return

low CSR values, likely because of algorithm error and

poor input data choices or bias-correction method (see

section 4). GSWP3’s low CSR is most likely because of

the bias-correction method given that 20CR (its un-

derlying data source) returns a good CSR.

b. Comparison of products and observations

To facilitate comparison between observations and

products, the differing spatial and temporal coverage

needs to be reconciled (though no comparison will be

perfect). All products were interpolated to the station

locations using the closest four land points and a

Cressman (1959) scheme in which the radius of influence

was chosen to be twice the distance of the maximum

gridbox dimension. For each station location, all dates

without valid observations were set as missing in the

interpolated products. Hence, this ‘‘product at station’’

quantity has the same amount of data as the observa-

tions and is used when making comparisons. The two

satellite products were subject to slightly different

treatment. For CERES, which is a monthly product,

prior to interpolation all days within a given month are

assigned the monthly value. GOES, unlike the other

products, contains some missing values; these were

simply left as missing and averages were computed

without them, but the conclusions regarding this product

are not impacted. The spatial resolution of the product

data ranges from 1km to 2.58 and can play a role in

details of evaluation; for example, it was noted that

when compared to station data, the same product at

0.258 and 2.58 resolutions gave increased monthly root-

mean-square error (RMSE) from 2.02 to 6.39Wm22

and daily correlation coefficients dropped from 0.996 to

0.969 (Jia et al. 2013). Such a result should be expected,

as a better-resolution product (in theory) carries more

information. However, the broad conclusions of this

work are not altered by such resolution changes.

1) SEASONAL MEANS

For each month, a mean value of CSR-corrected Ssurf
was computed if all days contained valid data, and for
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the period 2000–10, all valid months for each station

were averaged into a monthly climatology, after which

seasonal climatologies were made. The amount of data

used for the seasonal values varies for each point

(though data quantity will be the same for products and

observations at a point). For plotting, these values are

then interpolated onto the MERRA grid (chosen arbi-

trarily), only using stations within 100 kmof a grid center

(hence vacant areas in the maps).

Figure 5 shows the bias of each product in the seasonal

mean for summer months of June–August (JJA) at each

grid box, along with the RMSE of these biases. Other

seasons are given in the figures in the supplemental

material. Thirteen of the fifteen products have a bias

RMSE of greater than 18Wm22 (equivalent to greater

than 5% of the observed value). The recent reanalyses

(ERAI, MERRA, CFSRR, 20CR, and JRA-55) have a

positive bias for much of the CONUS for all seasons,

which is generally consistent with prior evaluations

(Decker et al. 2012). MERRA deviates with a negative

bias in the Gulf of Mexico and lower Atlantic coast re-

gion for JJA. These reanalyses produce correct clear-sky

values; thus, depiction of clouds within the radiative

transfer models are likely responsible for the error.

CRU–NCEP and GOES show a distinct negative bias in

the west and a positive bias in the east; this pattern is

more or less maintained in other seasons. GLDAS-1 and

NLDAS-2 generally have positive biases, but over the

mountainous western states, biases tend to be negative

or insignificant. Conversely, MsTMIP and Daymet

generally have strong negative biases, except over the

western mountain areas. NARR (and NCEP-1) has a

large positive bias as expected. CERES displays a low

error and no distinct spatial pattern and gives the closest

FIG. 4. The CSR [section 2b(4)], expressed as a percentage, for 12 available products calculated over the common years of 2007–10. As

would be desirable, the five newer reanalyses (MERRA, CFSRR, ERAI, JRA-55, and 20CR) all return values very close to 100%, while

the derivative products give variable CSRs. NCEP-1, GOES, and CERES are omitted.
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rendition to surface observations. GSWP3 has a slightly

larger RMSE than CERES, with more negative bias

locations. CERES, followed by GSWP3, consistently

has the lowest error across all seasons except December–

February (DJF), when GLDAS-1 has the lowest. Autumn

(September–November) errors are slightly lower than

winter (DJF), which would not be expected given the

seasonal cycle, and may be a result of lower data volumes

or possible remaining issues in winter observations.

2) ANNUAL CYCLE

Figure 6 shows an annual cycle, using monthly means,

over the years 2007–09 for six regional zones (denoted

by red dots in Fig. 1). At least four stations are used for

making the observed quantity and the corresponding

product value. Consistent with Fig. 5, some patterns are

evident; MsTMIP, GOES, and Daymet are usually the

lowest three values while MERRA, NCEP-1, and

NARR are the highest, and the ranking of products is

fairly consistent (though not always; Fig. 6). The broad

annual cycle is captured by most products (e.g., contrast

Florida vs California), though the span of annual

average radiation over all six regions among the more

acceptable products (from CRU–NCEP to MERRA) is

25Wm22, which is more than 12% of the observed

value. Notably, several products over- or underestimate

the impact of the particularly cloudy summer months in

Florida.

3) CORRELATION

To understand variability in Ssurf, the daily product-at-

station data were used to compute the correlation of the

clearness index (Ssurf/Sclear_sky), which gives an in-

dication of cloudiness (Fig. 7). Correlation of Ssurf alone

would result in high values simply because of the annual

cycle and thus is less informative. Varying levels of in-

terpolation and different-sized grid boxes are used in

creating the product-at-station data; thus, perfect cor-

relation is not expected.

MERRA, CFSRR, ERAI, and GLDAS-1 all corre-

late between 0.72 and 0.75 against observations, sug-

gesting that cloudiness and synoptic systems are

captured to a large degree. In turn, MERRA, CFSRR,

ERAI, and JRA-55 all show a high level of correlation

FIG. 5. Mean difference from observed surface solar flux (product minus observed) during JJA for the various products as well as the

observed values. NCEP-1, which has a known high bias, is omitted. The difference is calculated using only the same days of data as

available in the observations during the common period 2000–10.
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among each other, perhaps because of assimilation of

similar data. Conversely, MsTMIP, Daymet, GSWP3,

and 20CR all display lower correlation with observa-

tions (and each other). The hereditary properties of

products and their respective parents can be seen;

NLDAS-2 largely replicates the variability of NARR,

CRU–NCEP correlates best with NCEP-1, GSWP3 is

closest to 20CR, and MsTMIP is closest to NARR. The

GOES product has low correlation compared to all other

data at the daily scale, which is consistent with erratic

behavior or periods of systematic biases previously seen

in western U.S. regions (Jepsen et al. 2012; Slater et al.

2013) as well as the spatial patterns of biases (Fig. 5).

4) DEPARTURE FROM CLEAR-SKY RADIATION

An alternative view of the data is their departure from

Sclear_sky. Figure 8 demonstrates matters seen in the

various products over themajority of CONUS locations;

Mt. Herman station (southeastern Oklahoma) and the

closest product grid box (not interpolated) are shown as

an example. MERRA, CFSRR, ERAI, JRA-55, and

to a lesser extent 20CR all show a pronounced envelope

of data with a seasonal cycle that reaches Sclear_sky, as in

the observations, and confirms CSR results in Fig. 4. The

slightly more dispersed results of 20CR might be an

artifact of it being an ensemble mean flux, rather

than a single deterministic simulation like the other

reanalyses. As expected, NCEP-1 and NARR often

exceed Sclear_sky. GLDAS-1 shows a dispersed distribu-

tion of values, along with an anomaly in 2008–09 that is

seen at many other locations for which such analysis was

performed.Daymet has excessive amplitude in departure

from Sclear_sky; this amplitude is evenmore pronounced in

MsTMIP (along with an issue in 2010, which appears to

be very similar to the NARR value). In keeping with

Fig. 4, CRU–NCEPandNLDAS-2 rarely reach Sclear_sky,

whichmay be a function of their bias-correctionmethods

(see section 4b), while GSWP3 also seems to suffer from

its bias correction of the 20CR data.

4. Discussion

It is likely that many readers will be asking the ques-

tion, ‘‘Which dataset should I use for my model

FIG. 6. Monthly mean values for six regional clusters of stations for the years 2007–09 for 15 different products and observations. The

annual observed mean is given in the upper left corner of each panel and the mean for each product is color coded below each panel. The

mean over all six locations is given at the bottom of the figure, along with the color coded key, ranked from lowest to highest. The rankings

for each product are fairly consistent.

FIG. 7. Correlation of daily clearness index (Ssurf/Sclear_sky) at

station locations over the period 2000–10.
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simulations or analysis?’’ Unfortunately, none of the

products are able to meet the three desirable criteria of

low bias, good variability, and correct rendering of

Sclear_sky. On the basis of comparison to observations

and/or Sclear_sky, the NCEP-1, NARR, MsTMIP, CRU–

NCEP, Daymet, 20CR, and GOES products seem less

ideal. The high bias, due to poor rendition of cloud

magnitude, in MERRA, CFSRR, ERAI, and JRA-55

detract from their utility, though they capture variability

fairly well. GLDAS-1 and NLDAS-2 have midrange

performance in each of the three criteria. GSWP3 has

good bias performance at the seasonal scale, but other

statistical properties are lacking. The monthly CERES

product shows the lowest bias, perhaps because of its use

of top-of-atmosphere and concurrently retrieved cloud

properties (as given in the CERES product processing

flowchart; see website, Table 2).

Attributing precise cause to deficiencies in each

product is beyond the scope of this study; however, the

performance of some products can be linked to specific

issues with algorithms and bias-correction methods.

These items are explored below. Differences in the

various products compared to observations are not

spatially constant; therefore, apart from those products

that suffer from well-diagnosed deficiencies, it is dif-

ficult to extrapolate North American results to other

parts of the earth. The region of North America used

in this study is one of the most heavily observed in the

world with respect to the atmosphere and land sur-

face. A relatively high density of radiosondes should

allow for good characterization of Sclear_sky and cloudy

synoptic systems. Products may perform better or

worse in other locations or different time periods; for

example, the CERES product relies on geostationary

satellite inputs that are not available outside of 608S–
608N and quality of data products that use satellites for

bias correction may not be consistent over time (e.g.,

pre-2000).

a. Algorithm issues

Results of the comparison to observed data (Fig. 5) as

well as computation of the CSR (Fig. 4) suggest a

problem with the Daymet solar radiation algorithm in

most locations (other than snow-covered mountainous

regions).

To investigate this matter further, the solar radiation

code for Daymet, available within the MTCLIM pack-

age (http://www.ntsg.umt.edu/project/mtclim) was ob-

tained. MTCLIM 4.3 and MTCLIM, version 4.2

(MTCLIM 4.2), were downloaded and compiled ac-

cording to instructions, without modification. The daily

maximum and minimum temperature and precipitation

data, available on a 1 km 3 1km grid as used for com-

putation of theDaymet product, were used to force both

versions (4.3 and 4.2) of the MTCLIM code at the same

locations as the surface stations for the years 2007–10.

Calculated values fromMTCLIM 4.3 are effectively the

same as those of the downloaded Daymet solar radia-

tion. The difference between the two versions of the

algorithm (4.3 vs 4.2), as an annual mean, can be over

30Wm22 (Fig. 9) and the pattern is similar to the dif-

ference between Daymet and observations (in summer;

Fig. 5). For regions that might be snow covered, winter

values of version 4.3 are typically greater than version

4.2 (e.g., Fig. 10, a northern location). On an annual

scale, the snow may explain the continental south-to-

north gradient in differences, as well as noticeable points

in the Rocky Mountains (Fig. 9); a snow correction was

introduced in version 4.3 (Thornton et al. 2000). For

July, version 4.3 is lower than version 4.2 by at least

24Wm22 across the majority of the CONUS (see the

figures in the supplemental material).

Bohn et al. (2013) performed an assessment of the

MTCLIM algorithms, embedded within the hydrologi-

cal VIC (http://www.hydro.washington.edu/Lettenmaier/

Models/VIC/), and suggest that acceptable results will be

FIG. 8. Plots of the difference between clear-sky radiation and surface radiation (i.e., Sclear_sky2 Ssurf) for 13 products and observations at

Mt. Herman, Oklahoma. The two satellite products GOES and CERES are omitted.
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given. They show a global estimate of the number of

months during which the MTCLIM algorithm has a bias

of 10% or more of local radiation. For North America,

they expect that the only places to experience biases

of110% for more than 2months of the year are up in the

high Arctic of Canada, the western coastal portion of

Arctic Alaska, the Pacific Northwest coast, and the Ca-

nadian Rocky Mountains. This conclusion is derived in-

directly via regression of bias error against inputs of daily

temperature range and an aridity measure (the ratio of

daily potential evaporation to annual precipitation) as

quality observed Ssurf data are usually more difficult to

find than temperature and precipitation. Upon consulta-

tion with T. Bohn (2015, personal communication), it is

noted that this global estimate was made with MTCLIM

4.2, notMTCLIM 4.3 [which perhaps is not clear in Bohn

et al. (2013)] and explains why their results do not contain

the same errors shown by the Daymet data. VIC-based

MTCLIM code has been used in other studies with rea-

sonable results, for example, Mizukami et al. (2014), who

further showed that biases in daily temperature rangewill

impact the radiation results.

Results in Figs. 4 and 5 also suggest that problems with

MTCLIM 4.3 have propagated to MsTMIP data, which

gives the lowest radiation of all products. The use of

3-hourly averaged temperature values when compiling

daily maxima and minima for driving the MTCLIM al-

gorithm has perhaps resulted in not correctly resolving

the full diurnal temperature range so the algorithm re-

sponse would likely be muted further (cf. Mizukami

et al. 2014). Wei et al. (2014, their Fig. 3), however, show

very good performance of the MsTMIP data when

compared to an average annual cycle of 23 FLUXNET

sites. This result might be explained by partial use of

2010 data that are distinctly different from preceding

years (though neither the locations nor time period of

comparison are given, so it is hard to say). The figures

in the supplemental material of Wei et al. (2014) in-

dicate that MsTMIP Ssurf is considerably lower than

CRU–NCEP, which is more consistent with results here.

b. Bias-correction methods

Prior investigations of Ssurf data products have noted

their biases (see section 2f). A typical method of ame-

liorating this problem has been to simply multiply Ssurf
values by the ratio of desired mean Ssurf value to the

original mean value, often at a monthly or annual scale

(Cosgrove et al. 2003; Ngo-Duc et al. 2005). Observed

cloud cover combined with regression methods have

also been used to determine a bias-correction multiplier

(Sheffield et al. 2006;Weedon et al. 2010). Alternatively,

regenerating Ssurf via algorithms and temporally redis-

tributing data on a proportional basis according to an-

other product (Wei et al. 2014) had variable success

(section 4a). However, the use of multipliers can cause

problems with reproducing an ideal distribution of Ssurf
values or CSR (section 3a). The reanalyses that pro-

duce good Sclear_sky values tend to be biased high;

FIG. 10. An example of daily data computed with MTCLIM 4.3

and 4.2, showing that MTCLIM 4.3 gives higher values in winter

(presumably in the presence of snow), but considerably lower

values in summer. A calculated value of clear-sky radiation serves

as a reference.

FIG. 9. The mean annual global surface solar radiation (i.e., Ssurf) calculated by MTCLIM (left) 4.3 and (right) 4.2 and (middle) their

difference at the same locations as stations. Temperature and precipitation to force the algorithms is taken from the Daymet archive.
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thus, a bias-correction method is needed if such data

(which hopefully are consistent with other surface

meteorology) are to be used for driving models.

The correct distribution of solar radiation values may

be particularly important when considering plant phys-

iology and biogeochemical cycles. The observed re-

lationship between net or gross photosynthesis and

incident photosynthetically active radiation (PAR) is

nonlinear for many plant species (Kiniry et al. 1999;

Rosati and Dejong 2003). Additionally, photosynthesis

is more efficient under diffuse radiation conditions (Gu

et al. 2002; Mercado et al. 2009), and most empirical

methods of distributing radiation between direct and dif-

fuse beam typically dependnonlinearly on the quantitySsurf
(Weiss and Norman 1985; Spitters et al. 1986; Roderick

1999;Oleson et al. 2013).As an example scenario, a pattern

of Ssurf that does not reach realistic Sclear_sky values may be

interpreted as being continually diffuse and lead to simu-

lation of higher growth rates or carbon fixation.

The issues associated with current bias-correction

strategies are demonstrated in Fig. 11, which compares

bias-corrected products (NLDAS-2 and CRU–NCEP)

to their parent data (NARR and NCEP-1) and nearby

observations. It can be seen that the standard bias-

correction methods may not capture Sclear_sky values or

the correct regime of cloudiness (as indicated by the

clearness index). Hence, a new method for bias-

correcting Ssurf is suggested below.

For a given period, which could be a month or a year,

first gather the value of the desiredmean solar radiation,

that is, the final mean bias-corrected value Sbias_corrected.

This value could be obtained from observations or data

with a quality longer-term mean but poor temporal

resolution. Next, take the time series of the parent data

we wish to bias correct Sparent and divide them by their

CSR to realign clear-sky values to their correct quantity,

giving a series SCSR:

S
CSR

5
S
parent

CSR
. (3)

The CSR is determined via the method described in

section 2b(4), and for some products this step will have

minimum influence (e.g., the more recent reanalyses;

section 3a). However, problems such as excessive or

insufficient cloud simulation in the parent data will still

cause a bias, so further corrections are needed. Dividing

SCSR by clear-sky values (i.e., Sclear_sky) gives a series of

fractional values that indicate cloudiness:

F
CSR

5
S
CSR

S
clear_sky

. (4)

These FCSR values are then adjusted in order to obtain a

new set of fractional values Fbias_corrected that will pro-

vide us with bias-corrected solar radiation:

FIG. 11. Example of bias correction. Plots of parent data (NARR and NCEP-1; red), the child product that underwent bias correction

(NLDAS-2 and CRU–NCEP; purple), the newly proposed scheme (green), and observations (blue). Clear-sky values (black line) and

annualmean values are given for each data stream. The cumulative frequency distribution of the clearness index is given for each case. The

relationship between parent and bias-corrected product is evident.
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F
bias_corrected

5 (F
CSR

)a . (5)

The value of exponent a is found via iteration, with the

goal of minimizing the difference in mean values DS
between the original and bias-corrected data streams

over the given period of time (e.g., a month or a year):

DS5 S
parent

2 S
bias_corrected

, (6)

where

S
bias_corrected

5F
bias_corrected

(S
clear_sky

) (7)

and limits are imposed on the values of Fbias_corrected,

0:10#F
bias_corrected

# 1:00, (8)

as values should (usually) not exceed the clear-sky

value. The proposed method can be applied for hourly

as well as daily data and is able to increase or decrease

mean values of Ssurf.

A remaining limitation of bias corrections discussed

here is that if the temporal distribution of cloudy events

in the parent data is poor, the final bias-corrected data

will still retain vestiges of that problem. However, the

correlation of more recent reanalyses with observations

[section 3b(3)] suggests that the occurrence of cloudy

events tends to be captured (though their impact on Ssurf
is often incorrect). Reproducing cloud events, regardless

of their magnitude, is perhaps aided by the extensive

assimilation of atmospheric temperature and humidity

data (particularly over the CONUS) into reanalyses.

A demonstration of the new scheme is given in Fig. 11.

The only required inputs are a time series of the parent

data (in this case NARR and NCEP-1 data), along with

the values that represent the bias correction (in this case

the annual mean of the child products NLDAS-2 and

CRU–NCEP). The new scheme achieves the same level

of bias correction as the existing products; for example,

mean annual Ssurf is reduced from 249 at Altus, Okla-

homa, to 209 or 210Wm22 andAfton,Wyoming, shows a

reduction in Ssurf from 241 to 175Wm22 (Fig. 11), but

the distribution of cloudiness is much closer to that seen

in station data at the same locations.

5. Conclusions

Solar radiation is an extremely important part of the

surface energy balance and numerous products have

been developed to provide complete spatial and tem-

poral coverage of the CONUS region. There are con-

siderably more observed solar radiation data available

than were used in this study. Spatial gaps, such as over

Nebraska, could be filled as additional networks exist or

are developing, for example, the National Ecological

Observing Network (NEON). A balance between ap-

propriate recognition of data providers relative to data

access is desirable; the author therefore wishes to again

recognize the entities listed in Tables 1 and 2 and their

sponsors. The quantity of data available over the

CONUS in the last few years would suggest that an

observation-based product of daily Ssurf is feasible;

a near-real-time hourly data product may even be a

possibility.

There is potential to assimilate Ssurf values directly

into reanalysis systems, for example, to update aerosol

loading or precipitable water content and give better

cloud fraction diagnoses, but this would not be a trivial

exercise. A more tractable alternative could be to re-

process existing operational analysis and reanalysis

surface meteorology products beyond simple bias cor-

rection with assimilation of observed Ssurf and other

quantities observed at stations (temperature, humidity,

etc.). Along these lines, compilation of the individual

surface meteorology variables used for driving hydro-

logic, land, and ecologic models would preferably not be

done in isolation. Ideally, there would be an observa-

tionally based internal consistency between all variables

at the time step of the data series; for example, tem-

perature, humidity, radiation, and precipitation would

be all consistent with each other on an hourly basis.

Excluding direct use of station observations, a best

effort for the CONUS may be to take CFSRR or ERAI

and bias correct them to the monthly CERES values

using a method similar to that given in section 4b so as to

mimic appropriate cloud conditions and Sclear_sky values.

Solar radiation products used for model assessment

and/or development should achieve greater fidelity to

reality than simply having a low bias on monthly mean

values. This may be particularly important for the new

generation of land models that simulate mass, energy ex-

change along with plant physiological processes, and bio-

geochemical fluxes and/or dynamic vegetation (whether

implicit or explicit).

In summary, this study brought together extensive

observations of daily solar radiation and applied a QC

procedure that is designed to both screen for bad data

and rescue data that would otherwise be considered

erroneous. Fifteen different solar radiation products

were compared to these observations, as well as to each

other, using a variety of metrics and methods. No

product replicated all aspects of the station-based data

and there is room for improvement, though some prod-

ucts can be identified as better than others. Underlying

issues with a commonly used algorithm (MTCLIM 4.3)

were demonstrated, suggesting that the current version of
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algorithm and data product wants revision. Last, a new

method for bias-correcting Ssurf data was proposed, and it

was shown to reproduce the distribution of cloudiness

better than current methods. The conclusions regarding

the various products are broad in nature and give a gen-

eralization of the study region as a whole; however, it

should be noted that particular locations or localized re-

gions may see different levels of performance by some

products.
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